
Encapsulation for Practical Simplification Procedures
Olga Shumsky Matlin and William McCune

Mathematics and Computer Science Division
Argonne National Laboratory

Argonne, IL 60439

April 1, 2003

Abstract
ACL2 was used to prove properties of two simplification procedures. The procedures differ in complexity but

solve the same programming problem that arises in the context of a resolution/paramodulation theorem proving
system. Term rewriting is at the core of the two procedures, but details of the rewriting procedure itself are irrelevant.
The ACL2 encapsulate construct was used to assert the existence of the rewriting function and to state some of its
properties. Termination, irreducibility, and soundnessproperties were established for each procedure. The availability
of the encapsulation mechanism in ACL2 is considered essential to rapid and efficient verification of this kind of
algorithm.

1 Introduction and Problem Description
We examine simplification procedures that arise in resolution, paramodulation, and rewriting systems. We have
a programming problem, and at an abstract level we have a straightforward procedure to solve it. However, our
theorem provers (e.g., Otter [3]) are written in C, with lots of hacks and optimizations that impose constraints that do
not fit with our abstract solution. We have devised a two-stage procedure intended to have properties similar to those
of the straightforward procedure. The two-stage procedure obeys the constraints, but its correctness is not obvious,
so we have called on ACL2 [2] for assistance.

The following simplification problem is faced by many resolution/paramodulation style theorem-proving pro-
grams. Suppose we have a set S of clauses with the irreducibility property that no clause in S simplifies any other
clause in S. We wish to add a new set I of clauses to S and have the resulting set be equivalent to S I and also satisfy
the irreducibility property. The problem is interesting because, in addition to members of S simplifying members of
I, members of I can also simplify members of S, and those simplified members can simplify other members of S, and
so on. Consider the following procedure, which we call direct incorporation.

Q = I;
While (Q) do

C = dequeue(Q);
C = simplify(C, S);
if (C != TRUE)

for each D in S simplifiable by C
move D from S to Q;

append C to S;

In the terminology of our theorem prover Otter, the statement “C = simplify(C, S)” corresponds to both forward
rewriting and forward subsumption, and the loop “for eachD ...” corresponds to back subsumptionand back rewriting.
The list I represents a set of clauses derived by some inference rule.

This work was supported by the Mathematical, Information, and Computational Sciences Division subprogram of the Office of Advanced
Scientific Computing Research, Office of Science, U.S. Department of Energy, under Contract W-31-109-ENG-38.



The direct incorporation procedure does not suit our purposes, however. The set I can be too large to generate
in full before incorporating it into S. Members of I will typically simplify many other members of I, so we wish to
incorporate I into S as I is being generated. Furthermore, the set I is generated by making inferences from members
of S, and our algorithms and data structures do not allow us to remove clauses from S while it is being used to make
inferences.

Therefore, we use a two-stage procedure, which we call limbo incorporation. The first stage simplifies members
of I and, if they are not simplified to TRUE, puts them into a queue L (called the limbo list). The set S is not modified
by the first stage. The second stage processes L until it is empty. For each member B of L, all clauses in S that can
be simplified by B are removed from S, simplified by S L, then appended to L. The second stage is similar to the
direct incorporation procedure except that in the second stage, members of the queue being processed have already
been simplified with respect to S. In Otter terminology, the first stage does forward simplification, and the second
stage does back simplification.

The direct incorporation procedure and the limbo incorporation procedure do not necessarily produce the same re-
sults because the simplification operations can happen in different orders and the simplifiers we use do not necessarily
produce unique canonical forms.

Our goals are to show, for each incorporation procedure, that (1) it terminates, (2) it produces a set in which no
member can simplify any other member, and (3) the final set S is equivalent to the conjunction of I and the initial set
S.

2 ACL2 Solution
The reasoning we need to do is primarily about the order in which simplification operations occur and the sets of
simplifiers that are applied. The details of the basic simplification procedure and of the evaluation procedure for
proving equivalence properties are irrelevant. Therefore we have used an ACL2 encapsulation mechanism to assert
the existence and relevant properties of the simplification and evaluation functions.

An alternative to using the encapsulation mechanism is to fully define the simplification and evaluation functions
and then prove the required properties based on these formalizations. Term rewriting, which is at the core of the
simplification procedure, is not a simple algorithm [1], however, and considerable effort would have been required
to establish its termination and necessary properties. Formalizing an evaluation function would have necessitated
formalization of first-order logic in ACL2, as was done in the IVY [4] project. Our experiences in that project
highlighted the difficulties in implementing a general first-order evaluation function in ACL2 and reasoning about it.
Had we taken this route here, the majority of effort would have been spent on these underlying concepts, precluding us
from examining the procedures of interest quickly and efficiently. For these reasons, we believe that the encapsulation
mechanismwas invaluable in our current work.

2.1 Constrained Functions and Their Properties
We constrain four functions using the encapsulate construct. The function simplify (x y) is for simplification of an
element x by a set y. The function true-symbolp (x) is a recognizer for the true symbol (for example, T or ’true or 1)
in a particular logic. The function ceval (x i) is for evaluation of a clause x in interpretation i. The function scount (x)
is for computing the size of the argument.

Given witnesses for these four functions, the following constraints are stated and proved. Constraints fall into
three categories depending on which of the three main goals — termination, irredicibility, and logical equivalence
— they enable us to establish. To ensure termination of simplification procedures, in practice we typically use
the lexicographic path ordering or the recursive path ordering [1]. Simplification with these orderings can increase
the number of symbols, so acl2-count does not produce an accurate termination function. Instead, the constrained
function scount is used to determine the size of a clause. The main property of the function is that it returns a natural
number.

(defthm scount-natural
(and (integerp (scount x))

(<= 0 (scount x))))

Termination proofs depend on the constraint that for formulas that are indeed changed by simplification, the result of
the simplification is somehow smaller than the original expression.

2



(defthm scount-simplify
(or (equal (simplify x y) x)

(< (scount (simplify x y))
(scount x))))

Proof of the irreducibility property depends on the following properties of the basic simplification procedure. An
idempotence property states that once a formula is simplified by a set, attempting to simplify the result again by the
same set will have no effect. Another property requires that if a set simplifies a formula, then a superset of that set
does so as well. A third property states that two sets that do not simplify a formula individually do not do so when
considered collectively.

(defthm simplify-idempotent
(equal (simplify (simplify x y) y)

(simplify x y)))

(defthm simplify-subset
(implies (and (not (equal (simplify a x) a))

(subsetp-equal x y))
(not (equal (simplify a y) a))))

(defthm simplify-append
(implies (and (equal (simplify a x) a)

(equal (simplify a y) a))
(equal (simplify a (append x y)) a)))

We formalized the notion of rewritability to improve the readability of the formalizations of both the direct and
limbo incorporation procedures and to ease management of proofs. If a set simplifies an element, we say that the ele-
ment is rewritable by the set. The new function rewritable is defined outside the encapsulation. Once the termination
and irreducibility constraints are restated in terms of rewritable, the function is disabled.

(defun rewritable (x y)
(not (equal (simplify x y) x)))

Finally, the proofs of the logical equivalence property of our incorporation procedures depend on the following
properties of the constrained evaluation function and its relationship with simplify and true-symbolp. The evaluation
function is Boolean, and the true symbol of the logic is evaluated to true. We define a function to evaluate a set of
elements as a conjunction. The main soundness property of constrained simplification states that if the conjunction
of simplifiers is true, the evaluations of the original and simplified expressions are equal.

(defthm ceval-boolean
(or (equal (ceval x i) t) (equal (ceval x i) nil)))

(defthm true-symbolp-ceval
(implies (true-symbolp x) (ceval x i)))

(defun ceval-list (x i)
(if (endp x)

t
(and (ceval (car x) i) (ceval-list (cdr x) i))))

(defthm simplify-sound
(implies (ceval-list y i)

(equal (ceval (simplify x y) i) (ceval x i))))

2.2 Formalization and Termination of Incorporation Procedures
Three supporting functions are used to formalize the direct and limbo incorporation procedures. Rather than present
the ACL2 implementation of the functions, we simply describe them. The function extract-rewritables (x s) computes
a subset of elements of S that are rewritable by X. The function extract-n-simplify-rewritables (x s) produces a set of

3



elements of S that are rewritable by X and have been simplified by it. The function remove-rewritables (x s) produces
the set of elements of S that are not rewritable by X. The direct incorporation procedure is formalized by using the
last two functions as follows.

(defun direct-incorporation (q s)
(cond ((or (not (true-listp q)) (not (true-listp s))) ’INPUT-ERROR)

((endp q) s)
((true-symbolp (simplify (car q) s)) (direct-incorporation (cdr q) s))
(t (direct-incorporation

(append (cdr q)
(extract-n-simplify-rewritables (simplify (car q) s) s))

(cons (simplify (car q) s)
(remove-rewritables (simplify (car q) s) s))))))

The limbo incorporation procedure relies on computation of the initial limbo list and subsequent integration of
the list into the original database. As stated above, the second step of the incorporation procedure may place new
elements on the limbo list. Before any element is added to the limbo list, however, it is simplified as much as possible
by the members of the original database and the elements already on the limbo list. We note, therefore, that in the
recursive call of the function preprocess-list, in addition to the the members of original database and limbo list, the
set of simplifiers includes elements processed by the function in the previous calls.

(defun preprocess (x s l)
(if (true-symbolp (simplify x (append s l)))

l
(append l (list (simplify x (append s l))))))

(defun initial-limbo (q s l)
(if (endp q)

l
(initial-limbo (cdr q) s (preprocess (car q) s l))))

(defun preprocess-list (d s r)
(if (endp d)

r
(preprocess-list (cdr d) s (preprocess (car d)

(append s (cdr d))
r))))

(defun process-limbo (l s)
(cond ((or (not (true-listp l)) (not (true-listp s))) ’INPUT-ERROR)

((endp l) s)
(t (process-limbo (append (cdr l)

(preprocess-list
(extract-rewritables (car l) s)
(append (remove-rewritables (car l) s) l)
nil))

(cons (car l)
(remove-rewritables (car l) s))))))

(defun limbo-incorporation (q s)
(process-limbo (initial-limbo q s nil) s))

Termination proofs for the functions direct-incorporation and process-limbo rely on the simplification properties
stated in the encapsulation. The proofs are not entirely trivial; in order to achieve them, the conjectures must be split
into two cases: a case when the set of elements produced by the extract functions is empty, and a case when it is not.
We define an additional counting function lcount whose behavior on lists is similar to that of acl2-count, except that
the size of list elements is computed by using the constrained function scount.

4



(defun lcount (x)
(if (endp x)

0
(+ 1 (scount (car x)) (lcount (cdr x)))))

The measure function, based on lcount, is
(cons (+ 1 (lcount q) (lcount s))

(+ 1 (lcount q))).

We note that the formalization on the direct incorporation procedure is slightly different from the algorithm presented
in Section 1. In the algorithm elements D that are rewritable by C are moved from the set S onto Q. In the formaliza-
tion, these elements are simplified by C before being placed onto Q. This extra simplification step allows us to show
that the direct incorporation algorithm terminates. Yet this addition to the original algorithm does not affect the main
correctness properties of the procedure.

2.3 Irreducibility Property
We formulate the irreducibility property as follows. We first define a function mutually-irreducible-el-list (x s) that
checks that the element X neither rewrites nor is rewritable by anything in S. The main irreducibility check function
relies on the element wise irreducibility check.
(defun mutually-irreducible-el-list (x s)

(cond ((endp s) t)
((or (rewritable x (list (car s)))

(rewritable (car s) (list x))) nil)
(t (mutually-irreducible-el-list x (cdr s)))))

(defun irreducible-list (s)
(cond ((endp s) t)

((mutually-irreducible-el-list (car s) (cdr s))
(irreducible-list (cdr s)))

(t nil)))

We accomplished the second of the stated goals by proving that if the original database of clauses is irreducible, both
incorporation procedures produce sets with that property.
(defthm direct-incorporation-is-irreducible

(implies (irreducible-list s)
(irreducible-list (direct-incorporation q s))))

(defthm limbo-incorporation-is-irreducible
(implies (irreducible-list s)

(irreducible-list (limbo-incorporation q s))))

2.4 Soundness
Soundness proofs rely on the properties of ceval given in the encapsulate construct and were relatively easy to estab-
lish. We showed that both incorporation procedures produce a conjunction of clauses whose evaluation is equivalent
to the evaluation of the conjunctions of clauses in the two input sets.
(defthm direct-incorporation-is-sound

(implies (and (true-listp q)
(true-listp s))

(equal (ceval-list (direct-incorporation q s) i)
(and (ceval-list q i) (ceval-list s i))))

(defthm limbo-incorporation-is-sound
(implies (true-listp s)

(equal (ceval-list (limbo-incorporation q s) i)
(and (ceval-list q i) (ceval-list s i))))

5



3 Related Work and Conclusions
Our earlier project IVY [4] dealt with checking the proofs produced by Otter. The checker code was written in ACL2
and proved sound. Although both efforts concern the same software, the errors they help eliminate do not overlap.
IVY was designed to catch errors in Otter-produced proofs. This work focuses on irreducibility and termination, and
errors in the simplification procedure described here would likely not lead to soundness problems in the resulting
proofs, but would prevent Otter from finding some or all proofs for a particular problem.

Also related is the large and ongoing ACL2 effort on abstract reduction systems and term rewriting in [5]. The
effort concentrates on formalizing basic reduction and rewriting procedures in ACL2 and establishing their properties.
The work includes formalization of first-order logic and reasoning about termination of rewriting. Both are aspects
that our effort takes for granted to concentrate on a practical application that relies on a rewriting procedure.

The Otter code is based on an algorithm similar to limbo incorporation. Correctness of this algorithm is therefore
important to us but is not obvious because of the complexity of the algorithm. While the algorithm depends on
term rewriting and clause subsumption procedures, we were able, thanks to encapsulation mechanism in ACL2, to
concentrate on only a few relevant properties of these basic procedures and to devote all effort to understanding and
verifying the limbo incorporation, the actual procedure of interest.

References
[1] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press, Cambridge, United King-

dom, 1998.
[2] M. Kaufmann, P. Manolios, and J S. Moore. Computer-Aided Reasoning: An Approach. Kluwer Academic

Publishers, 2000.
[3] W. McCune. Otter 3.0 Reference Manual and Guide. Tech. Report ANL-94/6, Argonne National Laboratory,

Argonne, IL, 1994. See also URL http://www.mcs.anl.gov/AR/otter/.
[4] W. McCune and O. Shumsky. IVY: A preprocessor and proof checker for first-order logic. In M. Kaufmann,

P. Manolios, and J Moore, editors, Computer-Aided Reasoning: ACL2 Case Studies, chapter 16. Kluwer Aca-
demic, 2000.

[5] J. L. Ruiz Reina, J. A. Alonso, M. J. Hidalgo, and F. J. Martı́n. Formal proofs about rewriting using ACL2.
Annals of Mathematics and Artificial Intelligence, 36(3):239–262, 2002.

The submitted manuscript has been created by the University
of Chicago as Operator of ArgonneNational Laboratory (”Ar-
gonne”) under Contract No. W-31-109-ENG-38with the U.S.
Department of Energy. The U.S. Governmentretains for itself,
and others acting on its behalf, a paid-up, nonexclusive, irre-
vocable worldwide license in said article to reproduce, prepare
derivative works, distribute copies to the public, and perform
publicly and display publicly, by or on behalf of the Govern-
ment.

6


